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Abstract 

 

The recent proliferation of Data Grids and the increasingly common practice of using 

resources as distributed data stores provide a convenient environment for communities 

of researchers to share, replicate, and manage access to copies of large datasets. This 

has led to the question of which replica can be accessed most efficiently. In such 

environments, fetching data from one of the several replica locations requires accurate 

predictions of end-to-end transfer times. The answer to this question can depend on 

many factors, including physical characteristics of the resources and the load behavior 

on the CPUs, networks, and storage devices that are part of the end-to-end data path 

linking possible sources and sinks. 

 

Our approach combines end-to-end application throughput observations with network 

and disk load variations and captures whole-system performance and variations in load 

patterns. Our predictions characterize the effect of load variations of several shared 

devices (network and disk) on file transfer times. We develop a suite of univariate and 

multivariate predictors that can use multiple data sources to improve the accuracy of 

the predictions as well as address Data Grid variations (availability of data and 

sporadic nature of transfers). We ran a large set of data transfer experiments using 

GridFTP and observed performance predictions within 15% error for our testbed sites, 

which is quite promising for a pragmatic system. 

 

Keywords: Grids, data transfer prediction, replica selection. 
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1. Introduction 

 

As the coordinated use of distributed resources, or Grid computing, becomes more 

commonplace, basic resource usage is changing. Many recent applications use Grid 

systems as distributed data stores [DataGrid02, GriPhyN02, HSS00, LIGO02, 

MMR+01, NM02], where pieces of large datasets are replicated over several sites.  For 

example, several high-energy physics experiments have agreed on a tiered Data Grid 

architecture [HJS+00, Holtman00] in which all data (approximately 20 petabytes by 

2006) is located at a single Tier 0 site; various (overlapping) subsets of this data are 

located at national Tier 1 sites, each with roughly one-tenth the capacity; smaller 

subsets are cached at smaller Tier 2 regional sites; and so on.  Therefore, any particular 

dataset is likely to have replicas located at multiple sites. 

 

Different sites may have varying performance characteristics because of diverse storage 

system architectures, network connectivity features, or load characteristics.  Users (or 

brokers acting on their behalf) may want to be able to determine the site from which 

particular data sets can be retrieved most efficiently, especially as data sets of interest 

tend to be large (1–1000 MB).  It is this replica selection problem that we address in 

this paper. 

 

Since large file transfers can be costly, there is a significant benefit in selecting the 

most appropriate replica for a given set of constraints [ACF+02, VTF01]. One way a 

more intelligent replica selection can be achieved is by having replica locations expose 

performance information about past data transfers. This information can, in theory, 

provide a reasonable approximation of the end-to-end throughput for a particular 

transfer. It can then be used to make predictions about the future behavior between the 

sites involved. In our work we use GridFTP [AFN+01], part of the Globus ToolkitTM 

[FK98, Globus02] for moving data. We are interested in predicting the performance of 

GridFTP transfers for large files across the Grid.  
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In this paper we present two- and three-datastream predictions using regression 

techniques. We start by deriving predictions from past history of GridFTP transfers in 

isolation. We build a suite of univariate predictors comprising simple mathematical 

models such as mean- and median-based tools that are easy to implement and achieve 

acceptable levels of accuracy. We then present a detailed analysis of several variations 

of our univariate forecasting tools and information on GridFTP logs. 

 

The univariate models do not achieve better prediction accuracy because they fail to 

account for the sporadic nature of data transfers in Grid environments. Hence, 

predictions based on simple log data may not contain recent enough information on 

current system trends. We need to be able to derive forecasts from several combinations 

of “currently available” data sources.  

 

To address this need, we use both log data and periodic data to explain the behavior of 

key components in the end-to-end data path. We use the additional datastreams of 

network and disk behavior to illustrate how additional data can be exploited in 

predicting the behavior of large transfers. We present an in-depth study of these data 

sources and our multivariate forecasting tools, including information about data 

formats, lifetime, time/space constraints, correlation, statistical background on our 

regression tools, and the pros and cons of this approach. 

 

We then evaluate our prediction approaches using several different metrics. Comparing 

the normalized percentage errors of our various predictions, we find that the univariate 

predictions have error rates of at most 25% and that all the univariate predictors 

performed similarly. With multivariate predictions, we observed that combining 

GridFTP logs and disk throughput observations provided us with gains of up to 4% 

when compared with the best of univariate predictors. Combining logs with network 

throughput data provides further gains up to 6%, and predictions based on all three data 

sources had up to 9% reduction in error. To study the degree of variance in error rates, 

we computed confidence levels and observed that the variance is smaller with more 

accurate predictors for the sites we examined. We further developed a triplet metric 
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comprising the throughput, percentage error rate, and confidence level as a measure of 

a given site’s predictive merit. 

  

2. Related Work 

 

The goal of this work is to obtain accurate predictions of file transfer times between a 

storage system and a client.  Achieving this can be challenging because numerous 

devices are involved in the end-to-end path between the source and the client, and the 

performance of each (shared) device along the end-to-end path may vary in 

unpredictable ways. 

 

One approach to predicting this information is to construct performance models for 

each system component (CPUs at the level of cache hits and disk access, networks at 

the level of the individual routers, etc.) and then to use these models to determine a 

schedule for all data transfers [SC00], similar to classical scheduling [Adve93, Cole89, 

CQ93, Crovella99, ML90, Schopf97, TB86, ZLP96]. In practice, however, it is often 

unclear how to combine this data to achieve accurate end-to-end measurements. Also, 

since system components are shared, their behavior can vary in unpredictable ways 

[SB98]. Further, modeling individual components in a system may not capture the 

significant effects these components have on each other, thereby leading to inaccuracies 

[GT99].  

 

Alternatively, observations from past application performance of the entire system can 

be used to predict end-to-end behavior. The use of whole-system observation has 

relevant properties for our purposes.  These predictions can, in principle, capture both 

evolution in system configuration and temporal patterns in load.  A by-product of 

capturing entire system evolution is enhanced transparency, in that we can construct 

such predictions without detailed knowledge of the underlying physical devices. This 

technique is used by Downey [Downey97] and Smith et al. [SFT98] to predict queue 

wait times and by numerous tools (Network Weather Service [Wolski98], NetLogger 
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[NetLogger02], Web100 [Web100Project02], iperf [TF01], and Netperf [Jones02]) to 

predict the network behavior of small file transfers. 

 

Although tools such as the Network Weather Service (NWS) measure and predict 

network bandwidth, a substantial difference in performance can arise between a small 

NWS probe (lightweight with 64 KB size) and an actual file transfer using GridFTP 

(with tuned TCP buffers and parallelism). We show this in Figure 1, which depicts 64 

KB NWS measurements, indicating that the bandwidth is about 0.3 MB/sec, and end-

to-end GridFTP measurements, indicating a significantly higher transfer rate. In this 

case, NWS by itself is not sufficient to predict end-to-end GridFTP throughput. In 

addition, we see a much larger variability in GridFTP measurements, ranging from 1.5 

to 10.2 MB/sec (because of different transfer sizes and also load variations in the end-

to-end components), so that it is unlikely that a simple data transformation will improve 

the resulting prediction. 

 

The univariate predictors presented in this work are similar to the basic predictors used 

by NWS and similar tools to predict the behavior of time series data. Because our data 

traces are not periodic in nature, however, we also use predictions based on multiple 

datastreams. This approach is similar to work done by Faerman et al. [FSW+99], which 

used the NWS and adaptive linear regression models for the Storage Resource Broker 

[BMR+98] and SARA [SARA02]. Faerman and his colleagues compared transfer times 

obtained from a raw bandwidth model (Transfer-Time = ApplicationDataSize/NWS-

Probe-Bandwidth, with 64 KB NWS probes) with predictions from regression models 

and observed accuracy improvements ranging from 20% to almost 100% for the sites 

examined. The work presented here goes beyond that work, however, by exploring 

several filling techniques to mitigate adverse effects of sporadic transfers.  

 

Swany and Wolski have also approached multivariate predictors by constructing 

cumulative distribution functions of past history and deriving predictions from them as 

an alternative to regressive models. This approach has been demonstrated for 16 MB 

HTTP transfers with improved prediction accuracy when compared with their 
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univariate prediction approach [SW02]. Further, they have applied their models to our 

datasets, comprising various file sizes, and have observed comparable prediction 

accuracy. 

 

3. Data Sources 

 

In this section, we describe our three primary data sources. We use the GridFTP server 

to perform our data transfers and log its behavior every time a transfer is made, thereby 

recording the end-to-end transfer behavior. Since these events are very sporadic in 

nature, however, we also need to capture data about the current environment to have 

accurate predictions. Hence, we use the Network Weather Service probe data as an 

estimate of bandwidth for small data transfers and the iostat disk throughput data to 

measure disk behavior. 

 

3.1. GridFTP Logs 

 

GridFTP [AFN+01] is part of the Globus Toolkit™ [FK98, Globus02] and is widely 

used as a secure, high-performance data transfer protocol [ACF+02, AFN+01, 

DataGrid02, GriPhyN02]. It extends standard FTP implementations with several 

features needed in Grid environments, such as security, parallel transfers, partial file 

transfers, and third party transfers.. We instrumented the GT 2.0 wuftp-based GridFTP 

server to log the source address, file name, file size, number of parallel streams, stripes, 

TCP buffer size for the transfer, start and end timestamps, nature of the operation 

(read/write), and logical volume to/from which file was transferred (Table 1) [VSF02]. 

 

The GridFTP monitoring code is nonintrusive. The majority of the overhead is in the 

timing routines, with a smaller percentage spent gathering the information mentioned 

above and performing a write operation. The entire logging process consumes on 

average of approximately 25 milliseconds per transfer, which is insignificant compared 

with the total transfer time. The NWS and disk throughput logging consume much less 

time (only a few milliseconds) when compared with GridFTP logging. 
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Although each log entry (from all three datastreams) is well under 512 bytes, transfer 

logs can grow quickly in size at a busy site. We do not currently implement a log 

management scheme, but it would be straightforward to use a circular buffer, such as in 

the NWS. An alternative strategy used by NetLogger is to flush the logs to persistent 

storage (either disk or network) and restart logging. 

 

3.2. NWS 

 

The Network Weather Service [Wolski98] monitors the behavior of various resource 

components by sending out lightweight probes or querying system files at regular 

intervals. NWS sensors exist for components such as CPU, disk, and network. We used 

the network bandwidth sensor with 64 KB probes to estimate the current network 

throughput. NWS throughput measurements, although not representative of the transfer 

bandwidth obtainable for large files (10 MB to 1 GB), are representative of the network 

link characteristics. Further, NWS is intended to be a lightweight, noninvasive 

monitoring system whose measurements can then be extrapolated to specific cases such 

as ours. 

 

3.3. Iostat  

 

Traditionally, in large wide-area transfers, network transport has been considered to 

weigh heavily on the end-to-end throughput achieved. Current trends in disk storage 

and networking, however, suggest that disk accesses will factor rather strongly in the 

future. Network throughput is far outpacing advances in disk speeds. Therefore, as link 

speeds increase, the network latency significantly drops, and disk accesses are likely to 

become the bottleneck in large file transfers across the Grid [GS00].  

 

To address this issue, we include disk throughput data in our prediction approach. The 

iostat tool is part of the sysstat [SYSSTAT02] system-monitoring suite and collects 

disk I/O throughput data by monitoring the blocks read/written from/to a particular 
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disk. Iostat can be configured to periodically monitor disk transfer rates, block 

read/write rates, and so forth of all physically connected disks. We use the disk transfer 

rate that represents the throughput of the disk. 

 

3.4. Correlation 

 

A key step in analyzing whether a combination of datastreams will result in better 

predictions is to evaluate how highly correlated they are. The correlation coefficient is a 

measure of the linear relationship between two variables and can have a value between 

–1.0 and +1.0 depending on the strength of the relation. A coefficient near zero 

suggests that the variables may not be linearly related, although they may exhibit 

nonlinear dependencies [Edwards84, OM88]. The correlation coefficient for two 

datastreams G and N is computed by using the formula 

∑NG – (∑N∑G/size) 
corr =        _______________    _______________  , 
             √(∑G2 – (∑G)2/size)  √(∑N2 – (∑N)2/size) 

where “size” is the number of values in the data stream.  

 

We compute the rank-order correlation for each of our datasets. Rank correlation 

provides a distribution-free, nonparametric alternative to determine whether the 

observed correlation is significant [Edwards84]. Rank correlation converts data to ranks 

by assigning a specific rank to each value in the datastream, as determined by the 

position of the value when the datastream is sorted. Table 2 shows a tabulated listing of 

the 95% confidence interval for the correlation coefficients for the three datasets we 

collected between our transfer points. The confidence interval denotes that the 

correlation for 95% of the sample falls within a certain upper and lower limit. We can 

see a moderate correlation between GridFTP, NWS, and disk throughput datastreams. 

 

4. Predictors 

 

 8



                                                            Submitted to Special Issue of JHPCA, December 2002 

We evaluated a wide set of prediction techniques for wide-area data transfers. This 

section presents the univariate predictions and the multivariate prediction techniques 

we used in our experiments. 

 

4.1. Univariate Predictors 

 

In this section we describe some of the predictors we developed, categorize possible 

approaches by basic mathematical techniques, and detail the pros and cons of each 

technique.  

 

4.1.1. Mathematical Functions 

 

Mathematical functions for predictions are generally grouped into mean-based, median-

based, and autoregressive techniques. We use several variations of each of these models 

in our experiments. 

 

Mean-based, or averaging, techniques are a standard class of predictors that use 

arithmetic averaging (as an estimate of the mean value) over some portion of the 

measurement history to estimate future behavior.  The general formula for these 

techniques is the sum of the previous n values over the number of measurements. 

Mean-based predictors are easy to implement and impose minimally on system 

resources. 

 

A second class of standard predictors is based on evaluating the median of a set of 

values.  Given an ordered list of t values, if t is odd, the median is the (t+1)/2 value; if t 

is even, the median is half of the t/2 value added with the (t+1)/2 value. Median-based 

predictors are particularly useful if the measurements contain randomly occurring 

asymmetric outliers that are rejected. However, they lack some of the smoothing that 

occurs with a mean-based method, possibly resulting in forecasts with a considerable 

amount of jitter [HP91]. 
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The third class of common predictors is autoregressive models [GP94, HP91, 

Wolski98]. We use an autoregressive integrated moving average (ARIMA) model 

technique that is constructed using the equation  

G| = a + bGt-1, 

where G| is the GridFTP prediction for time, t, Gt-1 is the previous data occurrence, and 

a and b are the regression coefficients that are computed based on past occurrences of 

G using the method of least squares. This approach is most appropriate when there are 

at least fifty measurements and the data is measured with equally spaced time intervals. 

Our data does not meet these constraints, but we include this technique to do a full 

comparison. The main advantage of using an ARIMA model is that it gives a weighted 

average of the past values of the series, thereby possibly giving a more accurate 

prediction. However, in addition to requiring a larger data set than the other techniques 

to achieve a statistically significant result, the model can have a much greater 

computational cost. 

 

4.1.2. Context-Insensitive Variants 

 

More recent values are often better predictors of future behavior than an entire dataset, 

no matter which mathematical technique is used to calculate a prediction. Hence, many 

different variants exist in selecting a set of recent measurements to use in a prediction 

calculation. 

 

The fixed-length, or sliding window, average is calculated by using only a set number 

of previous measurements to calculate the average. The number of measurements can 

be chosen statically or dynamically depending on the system. We use only static 

selection techniques in this work. Options for dynamically selecting window size are 

discussed in [Wolski98]. The degenerative case of this strategy involves using only the 

last measurement to predict the future behavior. Work by Downey and Harchol-Balter 

[HD96] shows that this is a useful predictor for CPU resources, for example. 
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Instead of selecting the number of recent measurements to use in a prediction, we also 

consider using only a set of measurements from a previous window of time. Unlike 

other systems where measurements are taken at regular intervals [DO00, Wolski98], 

our measurements can be spaced irregularly. Using temporal windows for irregular 

samples can reflect trends more accurately than selecting a specific number of previous 

measurements because they capture recent fluctuations, thereby helping to ensure that 

recent (and, one hopes, more predictive) data is used. Much as the number of 

measurements included in a prediction can be selected dynamically, the window of time 

used can be decided dynamically.  

 

As shown in Table 3, we use fixed-length sets of the last 1 (last value), 5, 15, and 25 

measurements. We use temporal-window sets of data of the last 5 hours, 15 hours, 25 

hours, 5 days, and 10 days. We consider both mean-based and median-based predictors 

over previous n measurements; mean-based predictors over the previous 5, 15, and 25 

hours; and autoregression (AR) over the previous 5 and 10 days, since this function 

requires a much larger dataset to produce accurate predictions than our other 

techniques. 

 

4.1.3. Context-Sensitive Variants 

 

Filtering a data set to eliminate unrelated values often results in a more accurate 

prediction. For example, a prediction of salary is more accurate when factors such as 

previous training, education, and years at the position are used to limit the dataset of 

interest. 

 

With the GridFTP monitoring data, initial results showed that file transfer rates had a 

strong correlation with file size. Studies of Internet traffic have also revealed that small 

files achieve low bandwidths whereas larger files tend to have high bandwidths 

[BMK96, CSA98, GM01]. This difference is thought to be primarily due to the startup 

overhead associated with the TCP start mechanism that probes the bandwidth at 

connection startup. Recent work has focused on class-based isolation of TCP flows 
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[YM01] and on startup optimizations [ZQK00, ZQK99] to mitigate this problem.  As a 

proof of concept, we found 5%–10% improvement on average when using file-size 

classification instead of the entire history file to calculate a prediction. This is discussed 

in Section 5. 

 

For our GridFTP transfer data we ran a series of tests between our testbed sites to 

categorize the data sizes into a small number of classes. We categorized our data into 

four sets: 0–50 MB, 50–250 MB, 250–750 MB, and more than 750 MB based on the 

achievable bandwidth. We note that these classes apply to the set of hosts for our 

testbed only; further work is needed to generalize this notion. 

 

4.2. Multivariate Predictors 

 

The obvious downside of univariate predictors has nothing to do with the predictors 

themselves but more so with the nature of data transfers on the Grid. Because of the 

sporadic nature of transfers, predictors based on log data alone may fail to factor in 

current system trends and fluctuations. To mitigate the adverse effects of this problem, 

we introduce other “steady” and periodic datastreams to describe the behavior of 

components in the end-to-end data path, capturing current trends. 

 

We developed a set of multivariate predictors using regression models to predict from a 

combination of several data sources – GridFTP log data and network load data, 

GridFTP log data and disk load data, or a combination of all three. The datastreams 

require some preprocessing before the regression techniques can be applied to them. 

This includes time matching the data streams and filling-in techniques. 

 

4.2.1 Matching 

 

Our three data sources (GridFTP, disk I/O, and NWS network data) are collected 

exclusive of each other and rarely have the same timestamps. To use regressive models 

on the data streams, however, we need to have a one-to-one mapping for the values in 
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each stream. Hence, we are required to match values from the three sets such that for 

each GridFTP value, we find disk I/O and network observations that were made around 

the same time. 

 

For each GridFTP data point (TG, G), we match a corresponding disk load (TD, D) 

and NWS data point (TN, N) such that TN and TD are the closest to TG. By doing this, 

the triplet (Ni,Dj,Gk) represents an observed end-to-end GridFTP throughput (Gk) 

resulting from a data transfer that occurred with the disk load (Dj) and network probe 

value (Ni).  

 

At the end of the matching process, the three datastreams have been combined into the 

sequence that looks like 

(Ni,Dj,Gk)(Ni+1, Dj+1, _)…(Ni+m, Dj+m, Gk+1), 

where Gk, and Gk+1 are two successive GridFTP file transfers, Ni and Ni+m are NWS 

measurements, and Dj and Dj+m are disk load values that occurred in the same 

timeframe as the two GridFTP transfers. The sequence also consists of a number of disk 

load and NWS measurements between the two transfers for which there are no 

equivalent GridFTP values, such as (Ni+1, Dj+1, _). Note that these interspersed network 

and disk load values are time-aligned. Also note that we have described the matching 

process with reference to all three data sources. In the case where a prediction uses a 

different number of datastreams, similar matching techniques can be employed. 

 

4.2.2. Filling-in Techniques 

 

After matching the datastreams, we need to address the tuples that do not have values 

for the GridFTP data – that is, the NWS data or disk I/O data collected in between the 

sporadic GridFTP transfers. Regression models expect a one-to-one mapping between 

the data values, so we can either discard the network and I/O data for which there are 

no equivalent GridFTP data (our NoFill technique, Figure 2) or fill in synthetic transfer 

values using either an average over the past day’s data (Avg), or the last value (LV). 

Once filled in, the sequence is as follows: 
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(Ni,Dj,Gk)(Ni+1, Dj+1, GFill)…(Ni+m, Dj+m, Gk+1) 

where GFill is the synthetic GridFTP value. Data, once matched and filled in, is fed to 

regression models (Figure 3). 

 

4.2.3. Linear Regression 

 

Linear regression attempts to build linear models between dependent and independent 

variables. The following equation builds linear models between several independent 

variables N1, N2,…, Nk and dependent variable G as follows:  

G|=a+b1N1+b2N2+…+bkNk, 

where G| is the prediction of the observed value of G for the corresponding values of N1, 

N2,…, Nk. The coefficients a, b1, b2, and bk are calculated by using the method of least 

squares [Edwards84]. For our case, we built linear models between NWS (N), disk (D), 

and GridFTP (G) data as explained above, with N and D as independent variables. 

 

4.2.4. Polynomial Regression Models 

 

To improve prediction accuracy, we also developed a set of nonlinear models adding 

polynomial terms to the linear equation. For instance, a quadratic model is as follows:  
G|=a+b1N+b2N

2. 
Cubic and quartic models have additional terms b3N

3 and b4N
4, respectively. Similar to 

the linear model, the coefficients in quadratic, cubic, and quartic models b2, b3, and b4 

are computed by using the method of least squares. Adding polynomial terms to the 

regression model can reach a saturation point (no significant improvement in prediction 

accuracy observed), suggesting that a particular model sufficiently captures the 

relationship between the two variables [OM88, Pankratz91]. Figure 4 shows a bar graph 

that compares error, complexity of algorithm, and components included for the site pair, 

Lawrence Berkeley and Argonne National Laboratories.  

 

5. Measurements and Evaluation 
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We evaluated the performance of our regression techniques on datasets collected over 

three distinct two-week durations: August 2001, December 2001, and January 2002. In 

the following subsections we describe the experimental setup, prediction error 

calculations, and the results obtained from these datasets. 

 

5.1. Experimental Setup 

 

The experiments we ran consisted of controlled GridFTP transfers, NWS network sensor 

measurements, and disk throughput monitoring between four sites in our testbed (Figure 

5): Argonne National Laboratory (ANL), the University of Southern California 

Information Sciences Institute (ISI), Lawrence Berkeley National Laboratory (LBL) and 

the University of Florida at Gainesville (UFL).  

 

GridFTP experiments included transfers comprising several file sizes ranging from 10 

MB to 1 GB, performed at random time intervals within 12-hour periods. We calculated 

buffer sizes by using the formula 

RTT * "bottleneck bandwidth in the link" 

with roundtrip times (RTT) values obtained from ping and with bottleneck bandwidth 

obtained by using iperf [TF01]. Figure 5 shows the roundtrip times and bottleneck 

bandwidth for our site pairs. Our GridFTP experiments were performed with tuned TCP 

buffer settings (1 MB based on the bandwidth delay product) and eight parallel streams to 

achieve enhanced throughput. Logs of these transfers were maintained at the respective 

sites and can be found at [Traces02]. 

 

Configuring NWS among a set of resources involved setting up a nameserver and 

memory to which sensors at various sites registered and logged measurements 

[Wolski98]. In our experiments, we used ANL as a registration and memory resource. 

NWS network monitoring sensors between these sites were set up to measure bandwidth 

every five minutes with 64 KB probes.  
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Disk I/O throughput data was collected by using the iostat tool logging transfer rates 

every five minutes. Logs were maintained at the respective servers. 

 

For each data set and predictor, we used a 15-value training set; that is, we assumed that 

at the start of a predictive technique there were at least 15 GridFTP values in the log file 

(approximately two days worth of data). 

 

5.2. Metrics 

 

We calculate the prediction accuracy using the normalized percentage error calculation: 

    ∑ | MeasuredBW – PredictedBW | 
       % Error =              * 100 , 

(size * MeanBW) 
where “size” is the total number of predictions and the Mean is the average measured 

GridFTP throughput. In this subsection we show results based on the August 2001 

dataset. Complete results for all three datasets can be found in the appendix and at 

[Traces02]. 

 

In addition to evaluating the error of our predictions, we evaluate information about the 

variance in the error. Depending on the use case, a user may be more interested in 

selecting a site that has reasonable performance bandwidth estimates with a relatively low 

prediction error than in selecting a resource with higher performance estimates and a 

possibly much higher error in prediction. In such cases, it can be useful if the forecasting 

error can be stated with some confidence and with a maximum/minimum variation range. 

These limits can also, in theory, be used as catalysts for corrective measures in case of 

performance degradation.  

 

In our case, we can also use these limits to verify the inherent cost of accuracy of the 

predictors. By comparing the confidence intervals of these prediction error rates, we can 

determine whether the accuracy achieved is at the cost of greater variability, in which 

case there is little gain in increasing the component complexity of our prediction 

approach.  
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Thus, for any predictor (for any site pair and a given dataset), the information denoted by 

the following triplet can be used as a metric to gauge its accuracy: 

Accuracy-Metric = [PredictedThroughput, AvgPast % Error-Rate, ConfidenceLimit], 

where PredictedThroughput is the predicted GridFTP value (higher the better), with a 

certain percentage prediction error (the lower the better) and a percentage confidence 

interval for the error (the smaller the better).  

 

5.3. Univariate Predictor Performance 

 

Figure 6 shows bar charts of percentage error for our various univariate predictors at the 

various site pairs. The major result from these predictions is that even simple techniques 

are “at worst” off by about 25%, quite respectable for pragmatic prediction systems.    

 

Figure 7 shows the result of sorting the data by file size, since GridFTP throughput varied 

with transfer file sizes. We grouped several file sizes into categories:  0–50 MB as 10M, 

50–250 MB as 100M, 250–750 MB as 500M, and more than 750 MB as 1G, based on the 

achievable bandwidth. We observe almost up to 10% increase in accuracy with filtering 

context sensitive filtering. 

 

Figure 8 shows the relative performance of the predictors to determine which predictor 

performed better by computing the best and worst predictor for each data transfer. On 

average, predictors that had a high “best” percentage also had a high “worst” percentage.  

 

In general, for our univariate predictors,, we did not see a noticeable advantage of 

limiting either average or median techniques using a sliding window or time frames. The 

ARIMA models did not see improved performance for our data, although they are 

significantly more expensive. This is likely due to the irregular nature of our data. 

 

5.4. Multivariate Predictor Performance 
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Table 4 shows the performance gains of using a regression prediction with GridFTP and 

NWS network data (G+N) over using the GridFTP log data univariate predictor in 

isolation (first two shaded columns in the table). We use the moving average (AVG25) as 

a representative of univariate predictor performance. For our datasets, we observed a 4% 

to 6% improvement in prediction accuracy when the regression techniques with LV or 

AVG filling were used. Regression with NoFill (throwing away the unmatched GridFTP 

data) shows no significant improvement when compared with univariate predictors. 

 

Table 4 also shows that including disk I/O component load variations in the regression 

model provides us with gains of 2% to 4% (G+D Avg) when compared with AVG25 

(first and third shaded columns in the table). Different filling techniques (G+D Avg and 

G+D LV) perform similarly, and again NoFill shows no improvement, or even a decrease 

in accuracy, when compared with univariate predictors. 

 

Comparing the second and third block of data in Table 4 shows that all variations of 

predictors using NWS data (G+N) perform better than predictors using disk I/O data 

(G+D) in general. This observation agrees with our initial measurements that only 15% to 

30% of the total transfer time is spent in I/O, while the majority of the transfer time (in 

our experiments) is spent performing network transport. 

 

When we include both disk I/O and NWS network data in the regression model (G+N+D) 

along with GridFTP transfer logs, we see prediction error drop to 8% to 17% and up to 

3% improvement when compared with G+N (second and fourth shaded columns in Table 

4) and a 6% improvement over G+D (third and fourth shaded columns in Table 4). 

Overall, we see up to 9% improvement when we compare G+N+D with the original 

univariate prediction based on AVG25. 

 

Figure 9a compares the average prediction error for Moving Avg, G+D Avg, G+N Avg, 

and G+N+D Avg for all of our site pairs (represents the shaded columns in Table 4) and 

also presents 95% confidence limits for our prediction error rates. The prediction 

accuracy trend is as follows: 

 18
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Moving Avg < (G+D Avg) < (G+N Avg) < (G+N+D Avg) 

Figure 9b shows that the confidence interval (the variance in the error) does in fact 

reduce with more accurate predictors, but the reduction is not significant for our datasets. 

 

Figure 10 depicts the performance of predictors G+D Avg, G+N Avg and G+N+D Avg. 

The predictors closely track the measured GridFTP values. Predictions were obtained by 

using regression equations that were computed for each observed network or disk 

throughput value. 

 

For our datasets, we observed no noticeable improvement in prediction accuracy by using 

polynomial models for our site pairs. We studied the effects of polynomial regression on 

all our multivariate tools (G+D, G+N and G+N+D). Figure 11 shows the performance of 

linear, quadratic, cubic, and quartic regression models for various site pairs for the G+D 

Avg predictor. All our models performed similarly. On average, regression-based 

predictors with filling took approximately 10 msec for a dataset size of 50 GridFTP and 

1500 NWS values.  

 

6. Conclusions 

 

In this paper we describe the need for predicting the performance of GridFTP data 

transfers in the context of replica selection in Data Grids. We show how bulk data 

transfer predictions can be derived and how its accuracy can be improved by including 

information on current system/network trends. Further, we argue how data transfer 

predictions can be constructed using several combinations of datasets. We detail the 

development of a suite of univariate and multivariate predictors that satisfy the specific 

constraints of Data Grid environments. We examine a series of simple univariate 

predictors that are lightweight and use means, medians, and autoregressive techniques. 

We also use more complex regression analysis for multivariate predictors. To mitigate 

the adverse effects of sporadic transfers, multivariate predictors use several filling-in 

techniques such as last value (LV) and average (AVG). We observe that multivariate 
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predictors with filling offer considerable benefits (up to 9%) when compared with 

univariate predictors. 

 

Appendix 

 

Tables 5 and 6 show the performance gains of using a regression prediction with 

GridFTP and NWS network data (G+N) over using the GridFTP log data univariate 

predictor in isolation for the December 2001 and January 2002 datasets. Behaviors of 

both univariate and multivariate predictors are similar to those exhibited in the August 

2001 dataset (Table 4). In general, we observe performance improvements in using 

regression-based filling predictors and prediction error reduces with the addition of disk 

and network data. 
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Table 1: Sample set from a log of file transfers between Argonne and Lawrence Berkeley National Laboratories. The 
bandwidth values logged are sustained measures through the transfer. The end-to-end GridFTP bandwidth is obtained by 
the formula BW = file size / transfer time. 
 
Source IP File Name File Size 

(Bytes) 
Volume StartTime 

(Timestamp) 
EndTime 
(Timestamp) 

TotalTime 
(Seconds) 

Bandwidth 
(KB/Sec) 

Read/Write Streams TCP-
Buffer 

140.221.65.69 /home/ftp/vazhkuda/10 MB 10240000  /home/ftp 998988165 998988169 4 2560 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/25 MB 25600000 /home/ftp 998988172 998988176 4 6400 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/50 MB 51200000 /home/ftp 998988181 998988190 9 5688 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/100 MB 102400000 /home/ftp 998988199 998988221 22 4654 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/250 MB 256000000 /home/ftp 998988224 998988256 33 8000 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/500 MB 512000000 /home/ftp 998988258 998988335 67 7641 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/750 MB 768000000 /home/ftp 998988338 998988425 97 7917 Read 8 1000000 
140.221.65.69 /home/ftp/vazhkuda/1 GB 1024000000 /home/ftp 998988428 998988554 126 8126 Read 8 1000000 
 
 

 
 
 
 
 

Table 2: 95% Confidence for the upper and lower limits of the rank-order correlation coefficient for the GridFTP, 
NWS, and disk I/O datasets between four sites in our testbed. Denotes coefficients for our three datasets. 

 
 GridFTP and NWS GridFTP and Disk I/O 
 Aug’01 Dec’01 Jan’02 Aug’01 Dec’01 Jan’02 
 Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower 
LBL-ANL 0.8 0.5 0.5 0.3 0.6 0.2 0.6 0.1 0.5 0.2 0.5 0.1 
LBL-UFL 0.7 0.5 0.7 0.4 0.6 0.1 0.5 0.2 0.5 0.3 0.5 0.3 
ISI-ANL 0.8 0.5 0.6 0.4 0.7 0.3 0.5 0.2 0.6 0.4 0.6 0.3 
ISI-UFL 0.9 0.4 0.6 0.2 0.5 0.1 0.5 0.1 0.6 0.3 0.5 0.2 
ANL-UFL 0.5 0.2 0.6 0.2 0.6 0.1 0.5 0.2 0.4 0.1 0.4 0.2 
 
 
 

 

 
 
All data 
Last 1 Value 
Last 5 Values 
Last 15 Values 
Last 25 Values 
Last 5 Hours 
Last 15 Hours 
Last 25 Hours 
Last 5 Days 
Last 10 Days 

 
 
 
 

 

Table 3: Context-insensitive predictors used 

Average based Median based Autoregression 
AVG MED AR 
LV   
AVG5 MED5  
AVG15 MED15  
AVG25 MED25  
AVG5hr   
AVG15hr   
AVG25hr   
  AR5d 
 AR10d
25
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Table 4: Normalized percent prediction error rates for the testbed site pairs for the August 2001 dataset. The figure denotes 
four categories: (1) prediction based on GridFTP data in isolation (AVG25), (2) regression between GridFTP and NWS 
network data with the three filling in techniques (G+N), (3) regression between GridFTP and disk I/O data with the three 
filling in techniques (G+D), and (4) regression based on all three data sources (G+N+D). Shaded portions indicate a “best of 
class” comparison between the approaches. All percentage values are averages based on different file categories. 

 

Only 
GidFTP 

Logs 
[VSF02] 

Linear Regression between GridFTP 
Logs and Network Load [VS02] 

Linear Regression between GridFTP 
Logs and Disk Load 

Linear Regression uUing aAl Three 
Data Sources 

  
AVG25 G+N 

NoFill 
G+N 
LV 

G+N 
Avg 

G+D 
NoFill 

G+D 
LV 

G+D 
Avg 

G+N+D 
NoFill 

G+N+D 
LV 

G+N+D 
Avg 

LBL-ANL 24.4% 22.4% 20.6% 20% 25.2% 21.7% 21.4% 22.3% 17.7% 17.5% 
LBL-UFL 15% 18.8% 11.1% 11% 20.1% 11.6% 11.9% 11.1% 8.7% 8% 
ISI-ANL 15% 12% 9.5% 9% 13.1% 13% 11.4% 11% 8.9% 8.3% 
ISI-UFL 21% 21.9% 16% 14.5% 22.7% 19.7% 18.8% 14.7% 13% 12% 

ANL-UFL 20% 21% 20% 16% 21.8% 19.9% 19.3% 15.3% 16.7% 15.5% 

 
 

 Table 5: Normalized percent prediction error rates for the various site pairs for December 2001 dataset. Figure denotes four 

categories: (1) prediction based on GridFTP data in isolation (Moving Avg), (2) regression between GridFTP and NWS 
network data with the three filling in techniques (G+N), (3) regression between GridFTP and disk I/O data with the three 
filling in techniques (G+D), and (4) regression based on all three data sources (G+N+D). Shaded portions indicate a 
comparison between our approaches. All percentage values are averages based on different file categories. 

 

Only 
GidFTP 

Logs  

Linear Regression between GridFTP 
Logs and Network Load  

Linear Regression between GridFTP 
Logs and Disk Load 

Linear Regression Using All Three 
Data Sources 

  
Moving 

Avg 
G+N 

NoFill 
G+N 
LV 

G+N 
Avg 

G+D 
NoFill 

G+D 
LV 

G+D 
Avg 

G+N+D 
NoFill 

G+N+D 
LV 

G+N+D 
Avg 

LBL-ANL 20% 23% 17.6% 17% 24% 19.5% 19% 20% 15.2% 15.4% 
LBL-UFL 16% 17% 14.7% 13% 16% 14% 14.8% 14.5% 12.2% 12% 
ISI-ANL 13% 12% 10.6% 9.8% 12.2% 11.3% 11% 11.3% 9% 8.7% 
ISI-UFL 17% 19.3% 13.2% 12% 18% 15% 12% 15% 10% 10.8% 

ANL-UFL 18% 18.7% 14.8% 14% 17.8% 17% 16.7% 15.6% 14% 13.3% 
Table 6: Normalized percent prediction error rates for the various site pairs for January 2002 dataset. Figure denotes four 
categories: (1) prediction based on GridFTP data in isolation (Moving Avg), (2) regression between GridFTP and NWS 
network data with the three filling in techniques (G+N), (3) regression between GridFTP and disk I/O data with the three 
filling in techniques (G+D), and (4) regression based on all three data sources (G+N+D). Shaded portions indicate a 
comparison between our approaches. All percentage values are averages based on different file categories. 

 

Only 
GidFTP 

Logs  

Linear Regression between GridFTP 
logs and network load  

Linear Regression between GridFTP 
logs and disk load 

Linear Regression using all three 
data sources 

  
Moving 

Avg 
G+N 

NoFill 
G+N 
LV 

G+N 
Avg 

G+D 
NoFill 

G+D 
LV 

G+D 
Avg 

G+N+D 
NoFill 

G+N+D 
LV 

G+N+D 
Avg 

LBL-ANL 26% 26.8% 25.5% 23% 27% 25% 24.8% 23% 21.1% 20.3% 
LBL-UFL 21% 21 17.2% 17% 23.4% 21.3% 20.1% 17.5% 14% 13.3% 
ISI-ANL 20% 19% 16% 15.4% 22.5% 19% 19.2% 19% 13.6% 11.8% 
ISI-UFL 18% 18.8% 13% 12% 18.7% 16.8% 16.6% 15% 10.5% 11% 

ANL-UFL 17% 19.2% 12% 12.2% 19.2% 15.7% 15.9% 14.1% 12% 12.2% 
 26
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(a) LBL-ANL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) ISI-ANL 
 
 
 
 
 

Figure 1:  (a) LBL-ANL GridFTP (approximately 400 transfers at irregular intervals) end-to-end bandwidth and NWS
(approximately 1,500 probes every five minutes) probe bandwidth for the two-week August’01 dataset. (b) GridFTP
transfers and NWS probes between ISI-ANL 
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(a) Measured GridFTP and NWS 
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Figure 2: (a) Six measured successive GridFTP transfers and NWS observations during those transfers between LBL and
ANL (August 2001). (b) Discarding NWS values to match GridFTP transfers. Here (N26, G2) denotes that the 26th NWS
measurement and the 2nd GridFTP transfer occur in the same timeframe. (c) Filling-in the last GridFTP value to match
NWS values between six successive file transfers. (d) Filling-in average of previous GridFTP transfers to match NWS
values. 
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Figure 3: Sequence of events for deriving predictions
from GridFTP (G), disk load (D), and NWS (N)
datastreams. 
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Figure 4: Visualization comparing error, complexity of
algorithm, and components included for the site pair LBL
and ANL.  

Network+Disk Network Disk

Li
ne

ar

Q
ua

dr
at

ic

C
ub

ic

Q
ua

rti
c

Netw ork+Disk
Netw ork

Disk
0
5

10
15
20
25

Pe
rf

or
m

an
ce

 
(%

 E
rr

or
) 

Regression Model 
Complexity

Component 
ComplexityI

Figure 5: Depiction of network settings for our
testbed sites connected through OC-48 network links.
For each site pair, roundtrip times and bottleneck
bandwidths for the link between them is shown. 
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 Figure 6: Univariate predictor performance for the testbed site pairs. Predictors include mean-based, median-based,
and autoregressive models. The figure also shows context-insensitive variations of all the predictors. 
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Figure 7: Impact of classification and the reduction in percent error rates for the testbed (context-sensitive
filtering). 
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Figure 8: Relative performance of predictors As a percentage best/worst of all predictors for all site pairs. 



                                                            Submitted to Special Issue of JHPCA, December 2002 

 33

 

0%

5%

10%

15%

20%

25%

30%

35%
%

 E
rr

or
Moving  Avg G+D Avg G+N Avg G+N+D Avg

0%

1%

2%

3%

4%

5%

6%

7%

LBL-ANL LBL-UFL ISI-ANL ISI-UFL ANL-UFL

+ 
%

 C
on

fid
en

ce
 In

te
rv

al

Moving Avg G+D Avg G+N Avg G+N+D Avg

       LBL-ANL                LBL-UFL                 ISI-ANL                 ISI-UFL                   ANL-UFL

 (b) Comparison of intervals for the predictors 
 
Figure 9: (a) Normalized percent prediction error and 95% confidence limits for August 2001 dataset based on (1)
prediction based on GridFTP in isolation (MovingAvg), (2) regression between GridFTP and disk I/O with Avg filling
strategy (G+D Avg); (3) regression between GridFTP and NWS network data with Avg filling strategy (G+N Avg), and
(4) regressing all three datasets (G+N+D Avg). Confidence Limits denote the upper and lower bounds of prediction error.
For instance, the LBL-ANL pair had a prediction range of [17.3% + 5.2%]. (b) Comparison of the percentage of
variability among the predictors. 

(a) Comparison of normalized percent errors for the predictors with 95% confidence limits
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Figure 10: Predictors for 100 MB transfers between ISI and ANL for August 2001 dataset. In the graphs, GridFTP, G+D
Avg, G+N+D Avg, and NWS are plotted on the primary y-axis; while Disk I/O is plotted on the secondary y-axis. I/O
throughput denotes transfers per second.  
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Figure 11: Error rates of polynomial regression models for the G+D Avg predictor for the various site pairs.
Polynomials include linear, quadratic, cubic, and quartic models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Abstract
	RTT * "bottleneck bandwidth in the link"
	
	
	
	
	
	
	
	Appendix
	Acknowledgments
	References
	Author Biography









